

Welcome to the documentation of the signac project template!

This is the documentation for the signac-project-template designed for rapid project development based on the data management framework signac [https://signac.readthedocs.io] and the workflow extension signac-flow [https://signac-flow.readthedocs.io/].

Note

Before reading this manual you should be familiar with the basic concepts of signac [https://signac.readthedocs.io].

Contents:

	Quickstart
	The Basics

	Step-by-step

	Reference
	Introduction

	Classfication

	Operations

	The default workflow

	Running operations

	Scheduling

	API
	Module contents

	my_project.project module

	my_project.init module

	my_project.status module

	my_project.submit module

	my_project.environment module

	my_project.switch_workspace module

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

This project is based on the basic workflow implemented in the signac tutorial [https://signac.readthedocs.io/en/latest/tutorial.html].
Being familiar with the tutorial [https://signac.readthedocs.io/en/latest/tutorial.html] will help in understanding the logic of this template.

The project requires the signac-flow [https://signac-flow.readthedocs.io] package, which implements the core logic of the example workflow within a flow.FlowProject [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject] class.
In addition it adds functionality to work with schedulers in a cluster environment.

The Basics

This is a list of key things you need to know in order to efficiently work with this project:

	All modules are part of the my_project package located in the directory of the same name.

	The project execution logic is implemented within the project.MyProject class.

	All jobs are classified via str-labels with the MyProject.classify() method.

	The next operation is identified via the MyProject.next_operation() method.

	The project status may be examined by executing the status module.

	Job-operations may be submitted to a scheduler via the submit module.

	Python-based operations are implemented within the scripts/operations.py module.

	Operations defined in the scripts/operations.py module can be executed directly via the
scripts/run.py script.

A complete overview of all modules and functions an be found in the API chapter.

Step-by-step

This is a description on how to execute the complete workflow of this project.

Initialize the data space using a random number or string, e.g. your username:

$ python -m my_project.init $USER # (or $ python my_project.init 42)

You can check the status of your project:

$ python -m my_project.status -d
Query scheduler...
Determine job stati...
Generate output...

Status project 'MyProject':
Total # of jobs: 10
label progress
------- ----------

Detailed view:
job_id S next_op labels
-------------------------------- --- ---------- --------
6c57f630f0b62d449349ee2322cc16b6 U ! initialize
e0cf9aa968b48b22c66bbfda41d46129 U ! initialize
1677c153f81290d2e6e8b97a4f1d4297 U ! initialize
a230567b8a54d5c44d88b806b390b426 U ! initialize
3904431a51a3d3e4a31358f24b69d43f U ! initialize
...

Abbreviations used:
!: requires_attention
S: status
U: unknown

We initialize the jobs for hoomd-blue [https://hoomd-blue.readthedocs.io]:

$ python scripts/run.py initialize

Notice that the next_op and labels have changed if you check the status again:

$ python -m my_project.status -d
Query scheduler...
Determine job stati...
Generate output...

Status project 'MyProject':
Total # of jobs: 10
label progress
----------- --
initialized |##| 100.00%

Detailed view:
job_id S next_op labels
-------------------------------- --- --------- -----------
6c57f630f0b62d449349ee2322cc16b6 U ! estimate initialized
e0cf9aa968b48b22c66bbfda41d46129 U ! estimate initialized
1677c153f81290d2e6e8b97a4f1d4297 U ! estimate initialized
a230567b8a54d5c44d88b806b390b426 U ! estimate initialized
3904431a51a3d3e4a31358f24b69d43f U ! estimate initialized
...

Abbreviations used:
!: requires_attention
S: status
U: unknown

Compute the ideal gas estimate, just like in the tutorial:

$ python scripts/run.py estimate

Execute a molecular dynamics simulation using hoomd-blue [https://hoomd-blue.readthedocs.io] with:

$ python scripts/run.py sample 6c57

where 6c57 is the first few characters of the job id.

Note

When no job id is provided as argument, the specified operation is executed for all jobs.

Instead of running the operations directly, we can also submit them to a scheduler:

$ python -m my_project.submit -j sample

In this case we explicitly specified which operation to submit.
If we omit the argument, the next operation for each job will be submitted.

Tip

Use the --pretend argument to print the submission script to the screen instead
of submitting it during debugging.

The scheduler is determined from the environment with the environment module.
If your environment does not have a scheduler or it is not configured, signac-flow will raise an exception.
However, you can use a test environment with --test argument, which will mock an
actual submission process.

Reference

Introduction

A signac [https://glotzerlab.engin.umich.edu/signac] project manages a data space which is divided into segments, where each segment is strongly associated with a unique set of parameters: a state point.
The signac-flow [https://signac-flow.readthedocs.io] extension provides means to implement a workflow via the flow.FlowProject [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject] which inherits from signac.Project [https://signac.readthedocs.io/en/latest/signac.html#signac.Project].
This workflow is based on two core concepts: job classification and data space operations.

Classfication

We classify the state of a Job using text labels.
These labels can be determined by a simple generator function, e.g.:

def classify(job):
 if job.isfile('init.txt'):
 yield 'initialized'

Operations

A data space operation is any action that will modify the data space.

This is an example for an operation implemented in python:

def initialize(job):
 with job:
 with open('init.txt', 'w') as file:
 file.write('Hello world!')

The initialize operation will create a file called init.txt within a job‘s workspace.

The default workflow

Combining the concepts of classification and operations we can define the workflow logic of a flow.FlowProject [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject] by implementing the classify() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.classify] and the next_operation() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.next_operation] method:

from flow import FlowProject
from flow import JobOperation

class MyProject(FlowProject):

 def classify(self, job):
 if job.isfile('init.txt'):
 yield 'initialized'
 if job.isfile('dump.txt'):
 yield 'processed'

 def next_operation(self, job):
 labels = set(self.classify(job))

 def op(name):
 return JobOperation(name, job, 'python scripts/run.py {} {}'.format(name, job))

 if 'initialized' not in labels:
 return op('initialize')
 if 'processed' not in labels:
 return op('process')

The next_operation() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.next_operation] returns the default operation to execute next for a job in the identified state.
This operation is a command, which can be executed on the command line.
In the template, all operations are defined in the scripts/operations.py module and are executed by the scripts/run.py script.

We can get a quick overview of our project’s status via the print_status() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.print_status] method:

>>> project = MyProject()
>>> project.print_status(detailed=True, params=('a',))
Status project 'MyProject':
Total # of jobs: 10
label progress
----------- ---
initialized |########--------------------------------| 20.00%
processed |####------------------------------------| 10.00%

Detailed view:
job_id S next_op a labels
-------------------------------- --- ---------- --- ----------------------
108ef78ec381244447a108f931fe80db U ! sample 1 1 processed, initialized
be01a9fd6b3044cf12c4a83ee9612f84 U ! process 3 2 initialized
32764c28ef130baefebeba76a158ac4e U ! initialize 2.3
...

Tip

You can print the project’s status from the command line by executing $ python -m my_project.status.

Running operations

All python-based operations are implemented in the scripts/operations.py module.
We can use the scripts/run.py script to execute them directly, e.g.:

$ python scripts/run.py initialize 108e

This command will execute the initialize operation for the job identified by the 108e... id.

Scheduling

To take full advantage of the workflow management, it is advantagous to use a Scheduler [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.manage.Scheduler] which schedules the execution of job-operations for us.
The project template attempts to detect available schedulers through the environment module, but might require some tweaking based off your particular computing environment.

To submit job-operations to a scheduler, call the submit() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.submit] method.

Tip

You can submit job operations to a scheduler from the command line, by executing $ python my_project.submit.

The submit() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.submit] method will schedule the execution of operations for specified jobs by generating and submitting a jobscript to the scheduler.

Every job submission script has the same basic structure:

	environment dependent header (e.g. scheduler options)

	operation-agnostic header (e.g. switching into the project root directory)

	commands to execute operations

The scheduler header will vary across different scheduler implementations and should be configured via the environment module.

In summary, if we only execute operations defined in the operations module, we can run them either directly or submit them to a scheduler:

python scripts/run.py OPERATION [JOBID] ...
python -m my_project.submit [-j OPERATION] [JOBID] ...

API

Module contents

my_project.project module

my_project.init module

my_project.status module

my_project.submit module

my_project.environment module

my_project.switch_workspace module

Index

 nav.xhtml

 Table of Contents

 		Welcome to the documentation of the signac project template!

 		Quickstart

 		The Basics

 		Step-by-step

 		Reference

 		Introduction

 		Classfication

 		Operations

 		The default workflow

 		Running operations

 		Scheduling

 		API

 		Module contents

 		my_project.project module

 		my_project.init module

 		my_project.status module

 		my_project.submit module

 		my_project.environment module

 		my_project.switch_workspace module

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

