

 Navigation

 	
 index

 	
 next |

 	signac project template 0.2.0 documentation

Welcome to the documentation of the signac project template!

This is the documentation for the signac-project-template designed for rapid project development based on the data management framework signac [https://signac.readthedocs.io] and the workflow extension signac-flow [https://signac-flow.readthedocs.io/].

Note

Before reading this manual you should be familiar with the basic concepts of signac [https://signac.readthedocs.io].

Contents:

	Quickstart
	The Basics

	Step-by-step

	Reference
	Introduction

	Classfication

	Operations

	The default workflow

	Running operations

	Scheduling

	API
	Module contents

	my_project.project module

	my_project.init module

	my_project.status module

	my_project.submit module

	my_project.environment module

	my_project.header module

	my_project.switch_workspace module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Carl Simon Adorf, Paul Dodd.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	signac project template 0.2.0 documentation

Quickstart

This project is based on the basic workflow implemented in the signac tutorial [https://signac.readthedocs.io/en/latest/tutorial.html].
Being familiar with the tutorial [https://signac.readthedocs.io/en/latest/tutorial.html] will help in understanding the logic of this template.

The project requires the signac-flow [https://signac-flow.readthedocs.io] package, which implements the core logic of the example workflow within a flow.FlowProject [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject] class.
In addition it adds functionality to work with schedulers in a cluster environment.

The Basics

This is a list of key things you need to know in order to efficiently work with this project:

	All modules are part of the my_project package located in the directory of the same name.

	Data Space operations are implemented within the scripts/operations.py module.

	The project execution logic is implemented within the project.MyProject class.

	All jobs are classified via str-labels with the MyProject.classify() method.

	The next operation is identified via the MyProject.next_operation() method.

	Job-operations may be executed directly via the scripts/run.py script.

	Job-operations may be submitted to a scheduler via the submit module.

	The project status may be examined by executing the status module.

A complete overview of all modules and functions an be found in the API chapter.

Step-by-step

This is a description on how to execute the complete workflow of this project.

Initialize the data space using a random number or string, e.g. your username:

$ python my_project.init $USER # (or $ python my_project.init 42)

You can check the status of your project:

$ python my_project.status -d
Query scheduler...
Determine job stati...
Generate output...

Status project 'MyProject':
Total # of jobs: 5
label progress
----------- --
initialized |##| 100.00%

Detailed view:
job_id status next_operation labels
-------------------------------- -------- ---------------- -----------
8921709098d990fc70b19895653b7f01 unknown estimate initialized
8deb24c26dcb0bf0322cbf45c6b3198f unknown estimate initialized
b76e21a18c46a90ed52ec3f1e2cd6250 unknown estimate initialized
ed41e3073b4a4133c05bf7ed050ebceb unknown estimate initialized
fc89c69cb0f09b84f0b7f08c39bde326 unknown estimate initialized

Compute the ideal gas estimate, just like in the tutorial:

$ python scripts/run.py estimate

Or execute a molecular dynamics simulation using hoomd-blue [https://hoomd-blue.readthedocs.io] with:

$ python scripts/run.py equilibrate 8921

Note

When no job id is provided as argument, the specified operation is executed for all jobs.

Instead of running the operations directly, we can also submit them to a scheduler:

$ python my_project.submit -j equilibrate

In this case we explicitly specified which operation to submit.
If we omit the argument, the next operation for each job will be submitted.

Note

The scheduler is determined from the environment with the environment module.
If your environment does not have a scheduler or it is not configured, signac-flow will default to a fake scheduler, which prints the job scripts to screen.

 Copyright 2016, Carl Simon Adorf, Paul Dodd.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	signac project template 0.2.0 documentation

Reference

Introduction

A signac [https://glotzerlab.engin.umich.edu/signac] project manages a data space which is divided into segments, where each segment is strongly associated with a unique set of parameters: a state point.
The signac-flow [https://signac-flow.readthedocs.io] extension provides means to implement a workflow via the flow.FlowProject [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject] which inherits from signac.Project [https://signac.readthedocs.io/en/latest/signac.html#signac.Project].
This workflow is based on two core concepts: job classification and data space operations.

Classfication

We classify the state of a Job using text labels.
These labels can be determined by a simple generator function, e.g.:

def classify(job):
 if job.isfile('init.txt'):
 yield 'initialized'

Operations

A data space operation is any action that will modify the data space.

This is an example for an operation implemented in python:

def initialize(job):
 with job:
 with open('init.txt', 'w') as file:
 file.write('Hello world!')

The initialize operation will create a file called init.txt within a job‘s workspace.

The default workflow

Combining the concepts of classification and operations we can define the workflow logic of a flow.FlowProject [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject] by implementing the classify() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.classify] and the next_operation() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.next_operation] method:

from flow import FlowProject

class MyProject(FlowProject):

 def classify(self, job):
 if job.isfile('init.txt'):
 yield 'initialized'
 if job.isfile('dump.txt'):
 yield 'processed'

 def next_operation(self, job):
 labels = set(self.classify(job))
 if 'initialized' not in labels:
 return 'initialize'
 if 'processed' not in labels:
 return 'process'

The next_operation() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.next_operation] returns the default operation to execute next for a job in the identified state.

We can get a quick overview of our project’s status via the print_status() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.print_status] method:

>>> project = MyProject()
>>> project.print_status(detailed=True, params=('a',))
Status project 'MyProject':
Total # of jobs: 10
label progress
----------- ---
initialized |########--------------------------------| 20.00%
processed |####------------------------------------| 10.00%

Detailed view:
job_id S next_op a labels
-------------------------------- --- ---------- --- ----------------------
108ef78ec381244447a108f931fe80db U ! sample 1 1 processed, initialized
be01a9fd6b3044cf12c4a83ee9612f84 U ! process 3 2 initialized
32764c28ef130baefebeba76a158ac4e U ! initialize 2.3
...

Tip

You can print the project’s status from the command line by executing $ python -m my_project.status.

Running operations

All python-based operations are implemented in the scripts/operations.py module.
We can use the scripts/run.py script to execute them directly, e.g.:

$ python scripts/run.py initialize 108e

This command will execute the initialize operation for the job identified by the 108e... id.

Scheduling

To take full advantage of the workflow management, it is advantagous to use a Scheduler [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.manage.Scheduler] which schedules the execution of job-operations for us.
The project template attempts to detect available schedulers through the environment module, but might require some tweaking based off your particular computing environment.

To submit job-operations to a scheduler, call the submit() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.submit] method.

Tip

You can submit job operations to a scheduler from the command line, by executing $ python my_project.submit.

The submit() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.submit] method will schedule the execution of operations for specified jobs by generating and submitting a jobscript to the scheduler.

Every jobscript has the same structure:

	scheduler header

	project header

	operations

The scheduler header will vary across different scheduler implementations and can be configured via the header module.
The header contains commands which should only be executed once per submission, such as setting up the correct software environment.

By default only those job-operations are submitted where the operation is equal to the next operation.
This policy is implemented within the eligible() [https://signac-flow.readthedocs.io/en/latest/flow.html#flow.FlowProject.eligible] method.
Think of it as eligible for submission.
You can of course change the function to implement whatever policy you prefer.

In summary, we can execute operations defined in the operations module either directly or we can submit them to a scheduler:

python scripts/run.py OPERATION [JOBID] ...
python -m my_project.submit [-j OPERATION] [JOBID] ...

 Copyright 2016, Carl Simon Adorf, Paul Dodd.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	signac project template 0.2.0 documentation

API

Module contents

my_project.project module

my_project.init module

my_project.status module

my_project.submit module

my_project.environment module

my_project.header module

my_project.switch_workspace module

 Copyright 2016, Carl Simon Adorf, Paul Dodd.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	signac project template 0.2.0 documentation

Index

 Copyright 2016, Carl Simon Adorf, Paul Dodd.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		signac project template 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Carl Simon Adorf, Paul Dodd.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

